Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Mol Imaging Biol ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594545

ABSTRACT

PURPOSE: We recently developed an optical instrument to non-invasively detect fluorescently labeled circulating tumor cells (CTCs) in mice called 'Diffuse in vivo Flow Cytometry' (DiFC). OTL38 is a folate receptor (FR) targeted near-infrared (NIR) contrast agent that is FDA approved for use in fluorescence guided surgery of ovarian and lung cancer. In this work, we investigated the use OTL38 for in vivo labeling and detection of FR + CTCs with DiFC. PROCEDURES: We tested OTL38 labeling of FR + cancer cell lines (IGROV-1 and L1210A) as well as FR- MM.1S cells in suspensions of Human Peripheral Blood Mononuclear cells (PBMCs) in vitro. We also tested OTL38 labeling and NIR-DIFC detection of FR + L1210A cells in blood circulation in nude mice in vivo. RESULTS: 62% of IGROV-1 and 83% of L1210A were labeled above non-specific background levels in suspensions of PBMCs in vitro compared to only 2% of FR- MM.1S cells. L1210A cells could be labeled with OTL38 directly in circulation in vivo and externally detected using NIR-DiFC in mice with low false positive detection rates. CONCLUSIONS: This work shows the feasibility of labeling CTCs in vivo with OTL38 and detection with DiFC. Although further refinement of the DiFC instrument and signal processing algorithms and testing with other animal models is needed, this work may eventually pave the way for human use of DiFC.

2.
Front Immunol ; 15: 1354735, 2024.
Article in English | MEDLINE | ID: mdl-38384467

ABSTRACT

Folate receptors can perform folate transport, cell adhesion, and/or transcription factor functions. The beta isoform of the folate receptor (FRß) has attracted considerable attention as a biomarker for immunosuppressive macrophages and myeloid-derived suppressor cells, however, its role in immunosuppression remains uncharacterized. We demonstrate here that FRß cannot bind folate on healthy tissue macrophages, but does bind folate after macrophage incubation in anti-inflammatory cytokines or cancer cell-conditioned media. We further show that FRß becomes functionally active following macrophage infiltration into solid tumors, and we exploit this tumor-induced activation to target a toll-like receptor 7 agonist specifically to immunosuppressive myeloid cells in solid tumors without altering myeloid cells in healthy tissues. We then use single-cell RNA-seq to characterize the changes in gene expression induced by the targeted repolarization of tumor-associated macrophages and finally show that their repolarization not only changes their own phenotype, but also induces a proinflammatory shift in all other immune cells of the same tumor mass, leading to potent suppression of tumor growth. Because this selective reprogramming of tumor myeloid cells is accompanied by no systemic toxicity, we propose that it should constitute a safe method to reprogram the tumor microenvironment.


Subject(s)
Folate Receptor 2 , Neoplasms , Humans , Tumor Microenvironment , Neoplasms/metabolism , Macrophages , Folic Acid/metabolism
3.
J Nucl Med ; 64(5): 759-766, 2023 05.
Article in English | MEDLINE | ID: mdl-37116911

ABSTRACT

Fibroblast activation protein (FAP) has received increasing attention as an oncologic target because of its prominent expression in solid tumors but virtual absence from healthy tissues. Most radioligand therapies (RLTs) targeting FAP, however, suffer from inadequate tumor retention or clearance from healthy tissues. Herein we report a FAP-targeted RLT comprising an FAP6 ligand conjugated to DOTA and an albumin binder (4-p-iodophenylbutyric acid, or IP) for enhanced pharmacokinetics. We evaluated the performance of the resulting FAP6-IP-DOTA conjugate in 4 tumor models, 3 of which express FAP only on cancer-associated fibroblasts, that is, analogously to human tumors. Methods: Single-cell RNA-sequencing data were analyzed from 34 human breast, ovarian, colorectal, and lung cancers to quantify FAP-overexpressing cells. FAP6-DOTA conjugates were synthesized with or without an albumin binder (IP) and investigated for binding to human FAP-expressing cells. Accumulation of 111In- or 177Lu-labeled conjugates in KB, HT29, U87MG, and 4T1 murine tumors was also assessed by radioimaging or biodistribution analyses. Radiotherapeutic potency was quantitated by measuring tumor volumes versus time. Results: Approximately 5% of all cells in human tumors overexpressed FAP (cancer-associated fibroblasts comprised ∼77% of this FAP-positive subpopulation, whereas ∼2% were cancer cells). FAP6 conjugates bound to FAP-expressing cells with high affinity (dissociation constant, ∼1 nM). 177Lu-FAP6-IP-DOTA achieved an 88-fold higher tumor dose than 177Lu-FAP6-DOTA and improved all tumor-to-healthy-organ ratios. Single doses of 177Lu-FAP6-IP-DOTA suppressed tumor growth by about 45% in all tested tumor models without causing reproducible toxicities. Conclusion: We conclude that 177Lu-FAP6-IP-DOTA constitutes a promising candidate for FAP-targeted RLT of solid tumors.


Subject(s)
Albumins , Fibroblasts , Humans , Animals , Mice , Tissue Distribution , Cell Line, Tumor
4.
Small ; 19(21): e2204956, 2023 05.
Article in English | MEDLINE | ID: mdl-36840671

ABSTRACT

Accurate delineation of gross tumor volumes remains a barrier to radiotherapy dose escalation and boost dosing in the treatment of solid tumors, such as prostate cancer. Magnetic resonance imaging (MRI) of tumor targets has the power to enable focal dose boosting, particularly when combined with technological advances such as MRI-linear accelerator. Fibroblast activation protein (FAP) is overexpressed in stromal components of >90% of epithelial carcinomas. Herein, the authors compare targeted MRI of prostate specific membrane antigen (PSMA) with FAP in the delineation of orthotopic prostate tumors. Control, FAP, and PSMA-targeting iron oxide nanoparticles were prepared with modification of a lymphotropic MRI agent (FerroTrace, Ferronova). Mice with orthotopic LNCaP tumors underwent MRI 24 h after intravenous injection of nanoparticles. FAP and PSMA nanoparticles produced contrast enhancement on MRI when compared to control nanoparticles. FAP-targeted MRI increased the proportion of tumor contrast-enhancing black pixels by 13%, compared to PSMA. Analysis of changes in R2 values between healthy prostates and LNCaP tumors indicated an increase in contrast-enhancing pixels in the tumor border of 15% when targeting FAP, compared to PSMA. This study demonstrates the preclinical feasibility of PSMA and FAP-targeted MRI which can enable targeted image-guided focal therapy of localized prostate cancer.


Subject(s)
Nanoparticles , Prostatic Neoplasms , Male , Humans , Animals , Mice , Prostate , Magnetic Resonance Imaging , Fibroblasts
5.
Sci Rep ; 12(1): 8555, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35595733

ABSTRACT

Retrieval of circulating tumor cells (CTC) has proven valuable for assessing a patient's cancer burden, evaluating response to therapy, and analyzing which drug might treat a cancer best. Although most isolation methods retrieve CTCs based on size, shape, or capture by tumor-specific antibodies, we explore here the use of small molecule tumor-specific ligands linked to magnetic beads for CTC capture. We have designed folic acid-biotin conjugates with different linkers for the capture of folate receptor (FR) + tumor cells spiked into whole blood, and application of the same technology to isolate FR + CTCs from the peripheral blood of both tumor-bearing mice and non-small cell lung patients. We demonstrate that folic acid linked via a rigid linker to a flexible PEG spacer that is in turn tethered to a magnetic bead enables optimal CTC retrieval, reaching nearly 100% capture when 100 cancer cells are spiked into 1 mL of aqueous buffer and ~ 90% capture when the same quantity of cells is diluted into whole blood. In a live animal model, the same methodology is shown to efficiently retrieve CTCs from tumor-bearing mice, yielding cancer cell counts that are proportional to total tumor burden. More importantly, the same method is shown to collect ~ 29 CTCs/8 mL peripheral blood from patients with non-small cell lung cancer. Since the ligand-presentation strategy optimized here should also prove useful in targeting other nanoparticles to other cells, the methods described below should have general applicability in the design of nanoparticles for cell-specific targeting.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Neoplastic Cells, Circulating , Animals , Cell Count , Cell Line, Tumor , Cell Separation/methods , Folic Acid , Humans , Ligands , Mice , Molecular Weight , Neoplastic Cells, Circulating/pathology
6.
J Mater Chem B ; 10(12): 2038-2046, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35255116

ABSTRACT

Tumor-targeted fluorescent dyes have been shown to significantly improve a surgeon's ability to locate and resect occult malignant lesions, thereby enhancing a patient's chances of long term survival. Although several tumor-targeted fluorescent dyes have been developed for imaging specific subsets of human cancers, no tumor-targeted dye has been designed that can image all cancer types. Based on observations that fibroblast activation protein (FAP) is upregulated on cancer-associated fibroblasts (CAFs) that infiltrate essentially all solid tumors, we have undertaken to develop a FAP-targeted fluorescent dye that can image CAFs without accumulating in healthy cells or fibroblasts. We report here that FTL-S-S0456, a novel FAP-targeted near infrared dye that binds FAP with high affinity (∼12 nM) and specificity (>5000-fold over PREP and DPP-IV), concentrates in all seven solid tumor types examined, yielding fluorescence images with high tumor to background ratios that persist for several days. We conclude that FTL-S-S0456 constitutes an excellent ligand-targeted near infrared dye that enables intra-operative imaging of most if not all solid tumors.


Subject(s)
Fluorescent Dyes , Neoplasms , Cell Line, Tumor , Fibroblasts/metabolism , Fluorescence , Fluorescent Dyes/metabolism , Humans , Neoplasms/diagnostic imaging , Neoplasms/surgery , Proteins
7.
Front Immunol ; 13: 819163, 2022.
Article in English | MEDLINE | ID: mdl-35185910

ABSTRACT

Non-invasive imaging modalities constitute an increasingly important tool in diagnostic and therapy response monitoring of patients with autoimmune diseases, including rheumatoid arthritis (RA). In particular, macrophage imaging with positron emission tomography (PET) using novel radiotracers based on differential expression of plasma membrane proteins and functioning of cellular processes may be suited for this. Over the past decade, selective expression of folate receptor ß (FRß), a glycosylphosphatidylinositol-anchored plasma membrane protein, on myeloid cells has emerged as an attractive target for macrophage imaging by exploiting the high binding affinity of folate-based PET tracers. This work discusses molecular, biochemical and functional properties of FRß, describes the preclinical development of a folate-PET tracer and the evaluation of this tracer in a translational model of arthritis for diagnostics and therapy-response monitoring, and finally the first clinical application of the folate-PET tracer in RA patients with active disease. Consequently, folate-based PET tracers hold great promise for macrophage imaging in a variety of (chronic) inflammatory (autoimmune) diseases beyond RA.


Subject(s)
Arthritis, Rheumatoid/metabolism , Folate Receptor 2/metabolism , Macrophages/metabolism , Animals , Arthritis, Rheumatoid/diagnostic imaging , Arthritis, Rheumatoid/drug therapy , Folic Acid/metabolism , Folic Acid Antagonists/pharmacology , Folic Acid Antagonists/therapeutic use , Humans , Positron-Emission Tomography
8.
Angew Chem Int Ed Engl ; 61(15): e202113341, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35088497

ABSTRACT

Although chimeric antigen receptor (CAR) T cells have demonstrated significant promise in suppressing hematopoietic cancers, their applications in treating solid tumors have been limited by onset of CAR T cell exhaustion that accompanies continuous CAR T cell exposure to tumor antigen. To address this limitation, we have exploited the abilities of recently designed universal CARs to bind fluorescein and internalize a fluorescein-TLR7 agonist conjugate by CAR-mediated endocytosis. We demonstrate here that anti-fluorescein CAR-mediated uptake of a fluorescein-TLR7-3 conjugate can reactivate exhausted CAR T cells, leading to dramatic reduction in T cell exhaustion markers (PD-1+ Tim-3+ ) and shrinkage of otherwise resistant tumors without inducing systemic activation of the immune system. We conclude that CAR T cell exhaustion can be reversed by administration of a CAR-targeted TLR7 agonist, thereby enabling the CAR T cells to successfully treat solid tumors without incurring the systemic toxicity that commonly accompanies administration of nontargeted TLR7 agonists.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Antigens, Neoplasm , Fluorescein/metabolism , Humans , Immunotherapy, Adoptive , Neoplasms/metabolism , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes , Toll-Like Receptor 7/metabolism
9.
Molecules ; 26(12)2021 Jun 19.
Article in English | MEDLINE | ID: mdl-34205289

ABSTRACT

The inadvertent severing of a ureter during surgery occurs in as many as 4.5% of colorectal surgeries. To help prevent this issue, several near-infrared (NIR) dyes have been developed to assist surgeons with identifying ureter location. However, the majority of these dyes exhibit at least some issue that precludes their widespread usage such as high levels of uptake in other tissues, overlapping emission wavelengths with other NIR dyes used for other fluorescence-guided surgeries, and/or rapid excretion times through the ureters. To overcome these limitations, we have synthesized and characterized the spectral properties and biodistribution of a new series of PEGylated UreterGlow derivatives. The most promising dye, UreterGlow-11 was shown to almost exclusively excrete through the kidneys/ureters with detectable fluorescence observed for at least 12 h. Additionally, while the excitation wavelength is similar to that of other NIR dyes used for cancer resections, the emission is shifted by ~30 nm allowing for discrimination between the different fluorescence-guided surgery probes. In conclusion, these new UreterGlow dyes show promising optical and biodistribution characteristics and are good candidates for translation into the clinic.


Subject(s)
Abdomen/surgery , Optical Imaging/methods , Spectroscopy, Near-Infrared/methods , Ureter/surgery , Animals , Fluorescence , Fluorescent Dyes/metabolism , Humans , Kidney/surgery , Mice , Tissue Distribution/physiology , Ureter/metabolism
10.
Bioconjug Chem ; 32(8): 1548-1553, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34161726

ABSTRACT

The last step in influenza virus replication involves the assembly of viral components on the infected cell's plasma membrane followed by budding of intact virus from the host cell surface. Because viral neuraminidase and hemagglutinin are both inserted into the host cell's membrane during this process, influenza virus-infected cells are distinguished from uninfected cells by the presence of viral neuraminidase and hemagglutinin on their cell surfaces. In an effort to exploit this difference in cell surface markers for development of diagnostic and therapeutic agents, we have modified an influenza neuraminidase inhibitor, zanamivir, for targeting of attached imaging and therapeutic agents selectively to influenza viruses and virus-infected cells. We have designed here a zanamivir-conjugated rhodamine dye that allows visual monitoring of binding, internalization, and intracellular trafficking of the fluorescence-labeled neuraminidase in virus-infected cells. We also synthesize a zanamivir-99mTc radioimaging conjugate that permits whole body imaging of the virus's biodistribution and abundance in infected mice. Finally, we create both a zanamivir-targeted cytotoxic drug (i.e., zanamivir-tubulysin B) and a viral neuraminidase-targeted CAR T cell and demonstrate that they are both able to kill viral neuraminidase-expressing cells without damaging healthy cells. Taken together, these data suggest that the influenza virus neuraminidase inhibitor, zanamivir, can be exploited to improve the diagnosis, imaging, and treatment of influenza virus infections.


Subject(s)
Influenza A virus/isolation & purification , Influenza, Human/diagnostic imaging , Neuraminidase/analysis , Viral Proteins/analysis , Animals , Enzyme Inhibitors/analysis , HEK293 Cells , Humans , Influenza A virus/enzymology , Mice , Neuraminidase/antagonists & inhibitors , Optical Imaging , Orthomyxoviridae Infections/diagnostic imaging , Viral Proteins/antagonists & inhibitors , Zanamivir/analysis
11.
J Neuroinflammation ; 18(1): 30, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33472663

ABSTRACT

BACKGROUND: Activated macrophages in the experimental model of multiple sclerosis (MS) express folate receptor-ß (FR-ß), representing a promising target for the treatment of MS. Here, we both evaluated the efficacy of a novel folate-aminopterin construct (EC2319) in a rat focal model of multiple sclerosis (MS) and investigated the utility of 68Ga-labeled 1,4,7-triazacyclononane-1,4,7-triacetic acid-conjugated folate (68Ga-FOL) for assessing inflammatory lesions. In addition, we investigated whether FR-ß is expressed in the brain of patients with MS. METHODS: Focal delayed-type hypersensitivity experimental autoimmune encephalomyelitis (fDTH-EAE) was induced in 40 Lewis rats; 20 healthy Lewis rats were used as controls. Rats were divided into six groups according to the duration of disease (control, acute, or chronic) and intervention (vehicle versus EC2319). 68Ga-FOL analyses, histology, and immunofluorescence of the brain were performed to evaluate the efficacy of subcutaneously administered EC2319 on lesion development. Immunofluorescence was used to assess FR-ß expression in postmortem brain samples from 5 patients with MS and 5 healthy controls. RESULTS: Immunofluorescence and histological analyses revealed significant reductions in FR-ß expression (P < 0.05) and lesion size (P < 0.01), as well as improved inducible nitric oxide synthase/mannose receptor C type 1 ratios (P < 0.01) in macrophages and microglia during the chronic but not acute phase of fDTH-EAE in EC2319-treated rats. The uptake of IV-injected 68Ga-FOL in the brain was low and did not differ between the groups, but the in vitro binding of 68Ga-FOL was significantly lower in EC2319-treated rats (P < 0.01). FR-ß positivity was observed in chronically active lesions and in normal-appearing white matter in MS brain samples. CONCLUSIONS: EC2319 was well tolerated and attenuated inflammation and lesion development in a rat model of a chronic progressive form of MS. Human MS patients have FR-ß-positive cells in chronically active plaques, which suggests that these results may have translational relevance.


Subject(s)
Aminopterin/pharmacology , Encephalomyelitis, Autoimmune, Experimental/pathology , Folate Receptor 2/metabolism , Folic Acid Antagonists/pharmacology , Folic Acid/pharmacology , Animals , Humans , Multiple Sclerosis/metabolism , Rats , Rats, Inbred Lew
12.
Nat Commun ; 11(1): 5597, 2020 11 05.
Article in English | MEDLINE | ID: mdl-33154358

ABSTRACT

Seasonal influenza epidemics lead to 3-5 million severe infections and 290,000-650,000 annual global deaths. With deaths from the 1918 influenza pandemic estimated at >50,000,000 and future pandemics anticipated, the need for a potent influenza treatment is critical. In this study, we design and synthesize a bifunctional small molecule by conjugating the neuraminidase inhibitor, zanamivir, with the highly immunogenic hapten, dinitrophenyl (DNP), which specifically targets the surface of free virus and viral-infected cells. We show that this leads to simultaneous inhibition of virus release, and immune-mediated elimination of both free virus and virus-infected cells. Intranasal or intraperitoneal administration of a single dose of drug to mice infected with 100x MLD50 virus is shown to eradicate advanced infections from representative strains of both influenza A and B viruses. Since treatments of severe infections remain effective up to three days post lethal inoculation, our approach may successfully treat infections refractory to current therapies.


Subject(s)
Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , Immunotherapy/methods , Orthomyxoviridae Infections/drug therapy , 2,4-Dinitrophenol/administration & dosage , 2,4-Dinitrophenol/chemistry , 2,4-Dinitrophenol/immunology , Administration, Intranasal , Animals , Antibodies/administration & dosage , Antibodies/immunology , Antiviral Agents/chemistry , Cell Line , Cytotoxicity, Immunologic/drug effects , Drug Delivery Systems , Humans , Influenza A virus/drug effects , Influenza A virus/enzymology , Influenza A virus/physiology , Influenza B virus/drug effects , Influenza B virus/enzymology , Influenza B virus/physiology , Infusions, Parenteral , Mice , Mice, Inbred BALB C , Neuraminidase/antagonists & inhibitors , Neuraminidase/metabolism , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology , Protein Binding , Treatment Outcome , Virus Release/drug effects , Zanamivir/administration & dosage , Zanamivir/chemistry , Zanamivir/pharmacology
13.
Sci Transl Med ; 12(567)2020 10 28.
Article in English | MEDLINE | ID: mdl-33115948

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a lethal disease with an average life expectancy of 3 to 5 years. IPF is characterized by progressive stiffening of the lung parenchyma due to excessive deposition of collagen, leading to gradual failure of gas exchange. Although two therapeutic agents have been approved from the FDA for IPF, they only slow disease progression with little impact on outcome. To develop a more effective therapy, we have exploited the fact that collagen-producing myofibroblasts express a membrane-spanning protein, fibroblast activation protein (FAP), that exhibits limited if any expression on other cell types. Because collagen-producing myofibroblasts are only found in fibrotic tissues, solid tumors, and healing wounds, FAP constitutes an excellent marker for targeted delivery of drugs to tissues undergoing pathologic fibrosis. We demonstrate here that a low-molecular weight FAP ligand can be used to deliver imaging and therapeutic agents selectively to FAP-expressing cells. Because induction of collagen synthesis is associated with phosphatidylinositol 3-kinase (PI3K) activation, we designed a FAP-targeted PI3K inhibitor that selectively targets FAP-expressing human IPF lung fibroblasts and potently inhibited collagen synthesis. Moreover, we showed that administration of the inhibitor in a mouse model of IPF inhibited PI3K activation in fibrotic lungs, suppressed production of hydroxyproline (major building block of collagen), reduced collagen deposition, and increased mouse survival. Collectively, these studies suggest that a FAP-targeted PI3K inhibitor might be promising for treating IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , Phosphatidylinositol 3-Kinases , Animals , Fibroblasts , Idiopathic Pulmonary Fibrosis/drug therapy , Lung , Mice , Models, Theoretical , TOR Serine-Threonine Kinases
14.
J Immunother Cancer ; 8(2)2020 10.
Article in English | MEDLINE | ID: mdl-33127654

ABSTRACT

BACKGROUND: Most adoptive cell therapies (ACTs) suffer from an inability to control the therapeutic cell's behavior following its transplantation into a patient. Thus, efforts to inhibit, activate, differentiate or terminate an ACT after patient reinfusion can be futile, because the required drug adversely affects other cells in the patient. METHODS: We describe here a two domain fusion receptor composed of a ligand-binding domain linked to a recycling domain that allows constitutive internalization and trafficking of the fusion receptor back to the cell surface. Because the ligand-binding domain is designed to bind a ligand not normally present in humans, any drug conjugated to this ligand will bind and endocytose selectively into the ACT. RESULTS: In two embodiments of our strategy, we fuse the chronically endocytosing domain of human folate receptor alpha to either a murine scFv that binds fluorescein or human FK506 binding protein that binds FK506, thereby creating a fusion receptor composed of largely human components. We then create the ligand-targeted drug by conjugating any desired drug to either fluorescein or FK506, thereby generating a ligand-drug conjugate with ~10-9 M affinity for its fusion receptor. Using these tools, we demonstrate that CAR T cell activities can be sensitively tuned down or turned off in vitro as well as tightly controlled following their reinfusion into tumor-bearing mice. CONCLUSIONS: We suggest this 'chimeric endocytosing receptor' can be exploited to manipulate not only CAR T cells but other ACTs following their reinfusion into patients. With efforts to develop ACTs to treat diseases including diabetes, heart failure, osteoarthritis, cancer and sickle cell anemia accelerating, we argue an ability to manipulate ACT activities postinfusion will be important.


Subject(s)
Chimera/metabolism , Endocytosis/physiology , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/metabolism , Humans
15.
Sci Rep ; 10(1): 13593, 2020 08 12.
Article in English | MEDLINE | ID: mdl-32788595

ABSTRACT

Folate receptor ß (FR-ß), a marker expressed on macrophages, is a promising target for imaging of inflammation. Here, we report the radiosynthesis and preclinical evaluation of [68Ga]Ga-NOTA-folate (68Ga-FOL). After determining the affinity of 68Ga-FOL using cells expressing FR-ß, we studied atherosclerotic mice with 68Ga-FOL and 18F-FDG PET/CT. In addition, we studied tracer distribution and co-localization with macrophages in aorta cryosections using autoradiography, histology, and immunostaining. The specificity of 68Ga-FOL was assessed in a blocking study with folate glucosamine. As a final step, human radiation doses were extrapolated from rat PET data. We were able to produce 68Ga-FOL with high radiochemical purity and moderate molar activity. Cell binding studies revealed that 68Ga-FOL had 5.1 nM affinity for FR-ß. Myocardial uptake of 68Ga-FOL was 20-fold lower than that of 18F-FDG. Autoradiography and immunohistochemistry of the aorta revealed that 68Ga-FOL radioactivity co-localized with Mac-3-positive macrophage-rich atherosclerotic plaques. The plaque-to-healthy vessel wall ratio of 68Ga-FOL was significantly higher than that of 18F-FDG. Blocking studies verified that 68Ga-FOL was specific for FR. Based on estimations from rat data, the human effective dose was 0.0105 mSv/MBq. Together, these findings show that 68Ga-FOL represents a promising new FR-ß-targeted tracer for imaging macrophage-associated inflammation.


Subject(s)
Folate Receptor 2/metabolism , Folic Acid/chemistry , Heterocyclic Compounds, 1-Ring/chemistry , Macrophages/metabolism , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemistry , Animals , CHO Cells , Cricetinae , Cricetulus , Fluorodeoxyglucose F18/chemistry , Fluorodeoxyglucose F18/pharmacokinetics , Gallium Radioisotopes/chemistry , Gallium Radioisotopes/pharmacokinetics , Humans , Mice , Plaque, Atherosclerotic/metabolism , Positron Emission Tomography Computed Tomography/methods , Radiopharmaceuticals/pharmacokinetics , Rats , Tissue Distribution
16.
EMBO Mol Med ; 12(8): e12034, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32597014

ABSTRACT

Fibrotic diseases cause organ failure that lead to ~45% of all deaths in the United States. Activated macrophages stimulate fibrosis by secreting cytokines that induce fibroblasts to synthesize collagen and extracellular matrix proteins. Although suppression of macrophage-derived cytokine production can halt progression of fibrosis, therapeutic agents that prevent release of these cytokines (e.g., TLR7 agonists) have proven too toxic to administer systemically. Based on the expression of folate receptor ß solely on activated myeloid cells, we have created a folate-targeted TLR7 agonist (FA-TLR7-54) that selectively accumulates in profibrotic macrophages and suppresses fibrosis-inducing cytokine production. We demonstrate that FA-TLR7-54 reprograms M2-like fibrosis-inducing macrophages into fibrosis-suppressing macrophages, resulting in dramatic declines in profibrotic cytokine release, hydroxyproline biosynthesis, and collagen deposition, with concomitant increases in alveolar airspaces. Although nontargeted TLR7-54 is lethal at fibrosis-suppressing doses, FA-TLR7-54 halts fibrosis without evidence of toxicity. Taken together, FA-TLR7-54 is shown to constitute a novel and potent approach for treating fibrosis without causing dose-limiting systemic toxicities.


Subject(s)
Bleomycin , Pulmonary Fibrosis , Animals , Fibroblasts , Macrophages , Macrophages, Alveolar , Mice , Mice, Inbred C57BL , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy
17.
Mol Imaging Biol ; 22(5): 1280-1289, 2020 10.
Article in English | MEDLINE | ID: mdl-32519245

ABSTRACT

PURPOSE: We recently developed a new instrument called "diffuse in vivo flow cytometry" (DiFC) for enumeration of rare fluorescently labeled circulating tumor cells (CTCs) in small animals without drawing blood samples. Until now, we have used cell lines that express fluorescent proteins or were pre-labeled with a fluorescent dye ex vivo. In this work, we investigated the use of a folate receptor (FR)-targeted fluorescence molecular probe for in vivo labeling of FR+ CTCs for DiFC. PROCEDURES: We used EC-17, a FITC-folic acid conjugate that has been used in clinical trials for fluorescence-guided surgery. We studied the affinity of EC-17 for FR+ L1210A and KB cancer cells. We also tested FR- MM.1S cells. We tested the labeling specificity in cells in culture in vitro and in whole blood. We also studied the detectability of labeled cells in mice in vivo with DiFC. RESULTS: EC-17 showed a high affinity for FR+ L1210A and KB cells in vitro. In whole blood, 85.4 % of L1210A and 80.9 % of KB cells were labeled above non-specific background with EC-17, and negligible binding to FR- MM.1S cells was observed. In addition, EC-17-labeled CTCs were readily detectable in circulation in mice with DiFC. CONCLUSIONS: This work demonstrates the feasibility of labeling CTCs with a cell-surface receptor-targeted probe for DiFC, greatly expanding the potential utility of the method for pre-clinical animal models. Because DiFC uses diffuse light, this method could be also used to enumerate CTCs in larger animal models and potentially even in humans.


Subject(s)
Flow Cytometry/methods , Folate Receptors, GPI-Anchored/metabolism , Molecular Probes/chemistry , Neoplastic Cells, Circulating/pathology , Staining and Labeling , Animals , Cell Line, Tumor , Fluorescence , Folate Receptors, GPI-Anchored/blood , Humans , Mice
18.
Mol Imaging Biol ; 22(2): 377-383, 2020 04.
Article in English | MEDLINE | ID: mdl-31292915

ABSTRACT

PURPOSE: Neuroendocrine tumors (NETs) have reasonably high 5-year survival rates when diagnosed at an early stage but are significantly more lethal when discovered only after metastasis. Although several imaging modalities such as computed tomography (CT), positron emission tomography, and magnetic resonance imaging can detect neuroendocrine tumors, their high false positive rates suggest that more specific diagnostic tests are required. Targeted imaging agents such as Octreoscan® have met some of this need for improved specificity, but their inability to image poorly differentiated NETs suggests that improved NET imaging agents are still needed. Because neurokinin 1 receptors (NK1Rs) are widely over-expressed in neuroendocrine tumors, but show limited expression in healthy tissues, we have undertaken to develop an NK1R-targeted imaging agent for improved diagnosis and staging of neuroendocrine tumors. PROCEDURE: A small molecule NK1R antagonist was conjugated via a flexible spacer to a Tc-99m chelating peptide. After complexation with Tc-99m, binding of the conjugate to human embryonic kidney (HEK293) cells transfected with the human NK1R was evaluated as a function of radioimaging agent concentration. In vivo imaging of HEK293-NK1R tumor xenografts in mice was also performed by single-photon emission computed tomography/computed tomography (γ-SPECT/CT), and the distribution of the conjugate in various tissues was quantified by tissue resection and γ-counting. RESULTS: NK1R-targeted Tc-99m-based radioimaging agent displayed excellent affinity (Kd = 16.8 nM) and specificity for HEK293-NK1R tumor xenograft. SPECT/CT analysis of tumor-bearing mice demonstrated significant tumor uptake and high tumor to background ratio as early as 2 h post injection. CONCLUSION: The excellent tumor contrast afforded by our NK1R-targeted radioimaging agent exhibits properties that could improve early diagnosis and staging of many neuroendocrine tumors.


Subject(s)
Neuroendocrine Tumors/diagnostic imaging , Receptors, Neurokinin-1/chemistry , Technetium/chemistry , Animals , Chelating Agents/chemistry , False Positive Reactions , Female , HEK293 Cells , Humans , Ligands , Mice , Mice, Nude , Neoplasm Transplantation , Peptides/chemistry , Single Photon Emission Computed Tomography Computed Tomography , Somatostatin/analogs & derivatives , Tomography, X-Ray Computed
19.
Nat Commun ; 10(1): 2681, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31213606

ABSTRACT

Although chimeric antigen receptor (CAR) T cell therapies have demonstrated considerable success in treating hematologic malignancies, they have simultaneously been plagued by a cytokine release syndrome (CRS) that can harm or even kill the cancer patient. We describe a CAR T cell strategy in which CAR T cell activation and cancer cell killing can be sensitively regulated by adjusting the dose of a low molecular weight adapter that must bridge between the CAR T cell and cancer cell to initiate tumor eradication. By controlling the concentration and dosing schedule of adapter administration, we document two methods that can rapidly terminate (<3 h) a pre-existing CRS-like toxicity and two unrelated methods that can pre-emptively prevent a CRS-like toxicity that would have otherwise occurred. Because all four methods concurrently enhance CAR T cell potency, we conclude that proper use of bispecific adapters could potentially avoid a life-threatening CRS while enhancing CAR T cell tumoricidal activity.


Subject(s)
Immune System Diseases/prevention & control , Immunotherapy, Adoptive/adverse effects , Neoplasms/therapy , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Animals , Cell Engineering/methods , Cell Line, Tumor , Cytokines/immunology , Fluorescein/metabolism , Folate Receptors, GPI-Anchored/metabolism , Folic Acid/metabolism , Humans , Immune System Diseases/etiology , Immunotherapy, Adoptive/methods , Lymphocyte Activation/immunology , Mice , Neoplasms/immunology , Receptors, Chimeric Antigen/metabolism , Single-Chain Antibodies/immunology , Single-Chain Antibodies/metabolism , Syndrome , T-Lymphocytes/metabolism , T-Lymphocytes/transplantation , Xenograft Model Antitumor Assays
20.
Cancer Res ; 79(2): 387-396, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30482775

ABSTRACT

Most solid tumors are comprised of multiple clones that express orthogonal antigens, suggesting that novel strategies must be developed in order to adapt chimeric antigen receptor (CAR) T-cell therapies to treat heterogeneous solid tumors. Here, we utilized a cocktail of low-molecular-weight bispecific adapters, each comprised of fluorescein linked to a different tumor-specific ligand, to bridge between an antifluorescein CAR on the engineered T cell and a unique antigen on the cancer cell. This formation of an immunologic synapse between the CAR T cell and cancer cell enabled use of a single antifluorescein CAR T cell to eradicate a diversity of antigenically different solid tumors implanted concurrently in NSG mice. Based on these data, we suggest that a carefully designed cocktail of bispecific adapters in combination with antifluorescein CAR T cells can overcome tumor antigen escape mechanisms that lead to disease recurrence following many CAR T-cell therapies. SIGNIFICANCE: A cocktail of tumor-targeted bispecific adapters greatly augments CAR T-cell therapies against heterogeneous tumors, highlighting its potential for broader applicability against cancers where standard CAR T-cell therapy has failed.


Subject(s)
Breast Neoplasms/immunology , Breast Neoplasms/therapy , Immunotherapy, Adoptive/methods , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/immunology , Animals , Antigens, Neoplasm/immunology , Cell Engineering/methods , Cell Line, Tumor , Epitopes , Female , HEK293 Cells , Humans , Mice , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics , T-Lymphocytes/immunology , T-Lymphocytes/transplantation , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...